Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2253707

ABSTRACT

Organ-on-A-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed.


Subject(s)
Biocompatible Materials , Microfluidics , Humans , Microfluidics/methods , Biocompatible Materials/chemistry , Microphysiological Systems , Hydrogels/chemistry , Microtechnology , Printing, Three-Dimensional
2.
Adv Drug Deliv Rev ; 191: 114570, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2060294

ABSTRACT

Currently, there are over 100 antibody-based therapeutics on the market for the treatment of various diseases. The increasing importance of antibody treatment is further highlighted by the recent FDA emergency use authorization of certain antibody therapies for COVID-19 treatment. Protein-based materials have gained momentum for antibody delivery due to their biocompatibility, tunable chemistry, monodispersity, and straightforward synthesis and purification. In this review, we discuss progress in engineering the molecular features of protein-based biomaterials, in particular recombinant protein polymers, for introducing novel functionalities and enhancing the delivery properties of antibodies and related binding protein domains.


Subject(s)
COVID-19 Drug Treatment , Polymers , Humans , Polymers/chemistry , Nanotechnology , Biocompatible Materials/chemistry , Recombinant Proteins , Antibodies
3.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2032985

ABSTRACT

The nano-metal-treated PET films with anti-virus and anti-fogging ability were developed using sparking nano-metal particles of Ag, Zn, and Ti wires on polyethylene terephthalate (PET) films. Ag nanoparticles were detected on the PET surface, while a continuous aggregate morphology was observed with Zn and Ti sparking. The color of the Ag-PET films changed to brown with increasing repeat sparking times, but not with the Zn-PET and Ti-PET films. The water contact angle of the nano-metal-treated PET films decreased with increasing repeat sparking times. The RT-PCR anti-virus test confirmed the high anti-virus efficiency of the nano-metal-treated PET films due to the fine particle distribution, high polarity, and binding of the nano-metal ions to the coronavirus, which was destroyed by heat after UV irradiation. A highly transparent, anti-fogging, and anti-virus face shield was prepared using the Zn-PET film. Sparking was an effective technique to prepare the alternative anti-virus and anti-fogging films for medical biomaterial applications because of their low cost, convenience, and fast processing.


Subject(s)
Coronavirus , Metal Nanoparticles , Biocompatible Materials/chemistry , Metal Nanoparticles/chemistry , Polyethylene Terephthalates/chemistry , Silver/chemistry , Surface Properties , Water
4.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1818149

ABSTRACT

The impact of COVID-19 has rendered medical technology an important factor to maintain social stability and economic increase, where biomedicine has experienced rapid development and played a crucial part in fighting off the pandemic. Conductive hydrogels (CHs) are three-dimensional (3D) structured gels with excellent electrical conductivity and biocompatibility, which are very suitable for biomedical applications. CHs can mimic innate tissue's physical, chemical, and biological properties, which allows them to provide environmental conditions and structural stability for cell growth and serve as efficient delivery substrates for bioactive molecules. The customizability of CHs also allows additional functionality to be designed for different requirements in biomedical applications. This review introduces the basic functional characteristics and materials for preparing CHs and elaborates on their synthetic techniques. The development and applications of CHs in the field of biomedicine are highlighted, including regenerative medicine, artificial organs, biosensors, drug delivery systems, and some other application scenarios. Finally, this review discusses the future applications of CHs in the field of biomedicine. In summary, the current design and development of CHs extend their prospects for functioning as an intelligent and complex system in diverse biomedical applications.


Subject(s)
COVID-19 , Hydrogels , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Electric Conductivity , Humans , Hydrogels/chemistry , Hydrogels/therapeutic use , Tissue Engineering/methods
5.
ACS Appl Bio Mater ; 4(12): 8110-8128, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-1597218

ABSTRACT

The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials focusing on MPC polymers and highlight their attractive potentials for applications in micro/nanofabricated fluidic devices, biosensors, lab-on-a-chip, drug delivery systems (DDSs), COVID-19 potential usages for early diagnosis and even treatment, and artificial extracellular matrix scaffolds for cellular engineering.


Subject(s)
Biocompatible Materials/chemistry , Drug Carriers/chemistry , Lab-On-A-Chip Devices , Nanostructures/chemistry , Phospholipids/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Humans , Microscopy, Confocal , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
6.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: covidwho-1512380

ABSTRACT

Heparin and its derivatives are saving thousands of human lives annually, by successfully preventing and treating thromboembolic events. Although the mode of action during anticoagulation is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and other side effects. New applications in regenerative medicine have evolved supporting production of cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical and clinical data, this review summarizes the impact for manufacturing and application of cell therapeutics and highlights the need for discriminating the different heparins.


Subject(s)
Anticoagulants/chemistry , Cell- and Tissue-Based Therapy/methods , Heparin/analogs & derivatives , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Cell Adhesion , Hemorrhage/etiology , Heparin/adverse effects , Heparin/therapeutic use , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Regenerative Medicine , Thromboembolism/drug therapy
7.
Adv Mater ; 33(52): e2105361, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1453531

ABSTRACT

Solid-state optics has been the pillar of modern digital age. Integrating soft hydrogel materials with micro/nanooptics could expand the horizons of photonics for bioengineering. Here, wet-spun multilayer hydrogel fibers are engineered through ionic-crosslinked natural polysaccharides that serve as multifunctional platforms. The resulting flexible hydrogel structure and reversible crosslinking provide tunable design properties such as adjustable refractive index and fusion splicing. Modulation of the optical readout via physical stimuli, including shape, compression, and multiple optical inputs/outputs is demonstrated. The unique permeability of the hydrogels is also combined with plasmonic nanoparticles for molecular detection of SARS-CoV-2 in fiber-coupled biomedical swabs. A tricoaxial 3D printing nozzle is then employed for the continuous fabrication of living optical fibers. Light interaction with living cells enables the quantification and digitalization of complex biological phenomena such as 3D cancer progression and drug susceptibility. These fibers pave the way for advances in biomaterial-based photonics and biosensing platforms.


Subject(s)
Hydrogels/chemistry , Optical Fibers , Optics and Photonics/methods , Polysaccharides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biocompatible Materials/chemistry , Biosensing Techniques , COVID-19/diagnosis , COVID-19/virology , Cell Culture Techniques, Three Dimensional , Cell Line, Tumor , Cell Proliferation/drug effects , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Printing, Three-Dimensional , SARS-CoV-2/isolation & purification
8.
ACS Appl Bio Mater ; 4(8): 5897-5907, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1345533

ABSTRACT

The COVID-19 pandemic has made it essential to explore alternative antiviral materials. Alginate is a biodegradable, renewable, biocompatible, water-soluble and antiviral biopolymer with many potential biomedical applications. In this regard, this review shows 17 types of viruses that have been tested in contact with alginate and its related biomaterials. Most of these studies show that alginate-based materials possess little or no toxicity and are able to inhibit a wide variety of viruses affecting different organisms: in humans by the human immunodeficiency virus type 1, the hepatitis A, B, and C viruses, Sindbis virus, herpes simplex virus type 1 and 2, poliovirus type 1, rabies virus, rubella virus, and the influenza virus; in mice by the murine norovirus; in bacteria by the T4 coliphage, and in plants by the tobacco mosaic virus and the potato virus X. Many of these are enveloped positive-sense single-stranded RNA viruses, like SARS-CoV-2, which render alginate-based materials highly promising in the COVID-19 pandemic.


Subject(s)
Alginates/chemistry , Antiviral Agents/pharmacology , Biocompatible Materials/chemistry , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , COVID-19/virology , Cell Survival/drug effects , Hepatovirus/drug effects , Humans , Norovirus/drug effects , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
9.
Adv Mater ; 33(23): e2006582, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1208338

ABSTRACT

Light guiding and manipulation in photonics have become ubiquitous in events ranging from everyday communications to complex robotics and nanomedicine. The speed and sensitivity of light-matter interactions offer unprecedented advantages in biomedical optics, data transmission, photomedicine, and detection of multi-scale phenomena. Recently, hydrogels have emerged as a promising candidate for interfacing photonics and bioengineering by combining their light-guiding properties with live tissue compatibility in optical, chemical, physiological, and mechanical dimensions. Herein, the latest progress over hydrogel photonics and its applications in guidance and manipulation of light is reviewed. Physics of guiding light through hydrogels and living tissues, and existing technical challenges in translating these tools into biomedical settings are discussed. A comprehensive and thorough overview of materials, fabrication protocols, and design architectures used in hydrogel photonics is provided. Finally, recent examples of applying structures such as hydrogel optical fibers, living photonic constructs, and their use as light-driven hydrogel robots, photomedicine tools, and organ-on-a-chip models are described. By providing a critical and selective evaluation of the field's status, this work sets a foundation for the next generation of hydrogel photonic research.


Subject(s)
Hydrogels/chemistry , Hydrogels/metabolism , Optics and Photonics/instrumentation , Animals , Biocompatible Materials/chemistry , Cell Culture Techniques , Drug Delivery Systems , Elastic Tissue/chemistry , Equipment and Supplies , Humans , Printing, Three-Dimensional , Surface Properties , Tissue Engineering
10.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1304670

ABSTRACT

Silk fibroin (SF) has attracted much attention due to its high, tunable mechanical strength and excellent biocompatibility. Imparting the ability to respond to external stimuli can further enhance its scope of application. In order to imbue stimuli-responsive behavior in silk fibroin, we propose a new conjugated material, namely cationic SF (CSF) obtained by chemical modification of silk fibroin with ε-Poly-(L-lysine) (ε-PLL). This pH-responsive CSF hydrogel was prepared by enzymatic crosslinking using horseradish peroxidase and H2O2. Zeta potential measurements and SDS-PAGE gel electrophoresis show successful synthesis, with an increase in isoelectric point from 4.1 to 8.6. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) results show that the modification does not affect the crystalline structure of SF. Most importantly, the synthesized CSF hydrogel has an excellent pH response. At 10 wt.% ε-PLL, a significant change in swelling with pH is observed. We further demonstrate that the hydrogel can be glucose-responsive by the addition of glucose oxidase (GOx). At high glucose concentration (400 mg/dL), the swelling of CSF/GOx hydrogel is as high as 345 ± 16%, while swelling in 200 mg/dL, 100 mg/dL and 0 mg/dL glucose solutions is 237 ± 12%, 163 ± 12% and 98 ± 15%, respectively. This shows the responsive swelling of CSF/GOx hydrogels to glucose, thus providing sufficient conditions for rapid drug release. Together with the versatility and biological properties of fibroin, such stimuli-responsive silk hydrogels have great potential in intelligent drug delivery, as soft matter substrates for enzymatic reactions and in other biomedical applications.


Subject(s)
Drug Delivery Systems/methods , Fibroins/chemistry , Glucose/metabolism , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Drug Liberation , Fibroins/metabolism , Glucose/chemistry , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Polylysine/chemistry , Silk/chemistry , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
11.
Int J Biol Macromol ; 183: 549-563, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1208539

ABSTRACT

Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.


Subject(s)
Biocompatible Materials/chemistry , COVID-19 , Polyhydroxyalkanoates/chemistry , SARS-CoV-2 , Animals , Biodegradation, Environmental , Humans , Medical Waste , Medical Waste Disposal
12.
Adv Mater ; 33(20): e2100012, 2021 May.
Article in English | MEDLINE | ID: covidwho-1173766

ABSTRACT

The COVID-19 pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great impact on the global economy and people's daily life. In the clinic, most patients with COVID-19 show none or mild symptoms, while approximately 20% of them develop severe pneumonia, multiple organ failure, or septic shock due to infection-induced cytokine release syndrome (the so-called "cytokine storm"). Neutralizing antibodies targeting inflammatory cytokines may potentially curb immunopathology caused by COVID-19; however, the complexity of cytokine interactions and the multiplicity of cytokine targets make attenuating the cytokine storm challenging. Nonspecific in vivo biodistribution and dose-limiting side effects further limit the broad application of those free antibodies. Recent advances in biomaterials and nanotechnology have offered many promising opportunities for infectious and inflammatory diseases. Here, potential mechanisms of COVID-19 cytokine storm are first discussed, and relevant therapeutic strategies and ongoing clinical trials are then reviewed. Furthermore, recent research involving emerging biomaterials for improving antibody-based and broad-spectrum cytokine neutralization is summarized. It is anticipated that this work will provide insights on the development of novel therapeutics toward efficacious management of COVID-19 cytokine storm and other inflammatory diseases.


Subject(s)
Biocompatible Materials/chemistry , COVID-19/pathology , Cytokine Release Syndrome/therapy , Cytokines/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Biocompatible Materials/metabolism , COVID-19/complications , COVID-19/virology , Cytokine Release Syndrome/etiology , Cytokines/immunology , Cytokines/metabolism , Extracellular Vesicles/chemistry , Humans , Nanoparticles/chemistry , Polymers/chemistry , SARS-CoV-2/isolation & purification
13.
Adv Mater ; 33(16): e2100218, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1121010

ABSTRACT

From typical electrical appliances to thriving intelligent robots, the exchange of information between humans and machines has mainly relied on the contact sensor medium. However, this kind of contact interaction can cause severe problems, such as inevitable mechanical wear and cross-infection of bacteria or viruses between the users, especially during the COVID-19 pandemic. Therefore, revolutionary noncontact human-machine interaction (HMI) is highly desired in remote online detection and noncontact control systems. In this study, a flexible high-sensitivity humidity sensor and array are presented, fabricated by anchoring multilayer graphene (MG) into electrospun polyamide (PA) 66. The sensor works in noncontact mode for asthma detection, via monitoring the respiration rate in real time, and remote alarm systems and provides touchless interfaces in medicine delivery for bedridden patients. The physical structure of the large specific surface area and the chemical structure of the abundant water-absorbing functional groups of the PA66 nanofiber networks contribute to the high performance synergistically. This work can lead to a new era of noncontact HMI without the risk of contagiousness and provide a general and effective strategy for the development of smart electronics that require noncontact interaction.


Subject(s)
Biosensing Techniques/methods , Electronics , Asthma/diagnosis , Biocompatible Materials/chemistry , Biosensing Techniques/instrumentation , Electrodes , Graphite/chemistry , Humans , Humidity , Internet of Things , Mobile Applications , Nanofibers/chemistry , Respiratory Rate , Wearable Electronic Devices
14.
Adv Mater ; 33(8): e2005477, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1039151

ABSTRACT

Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Biomimetic Materials/chemical synthesis , Oxides/chemical synthesis , Peroxidase/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biomimetic Materials/pharmacology , Catalysis , Humans , Hydrogen Peroxide/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Molecular Dynamics Simulation , Molybdenum/pharmacology , Oxides/pharmacology , Peroxidase/metabolism , Sterilization , Vancomycin/pharmacology
15.
Int J Mol Sci ; 22(1)2020 Dec 25.
Article in English | MEDLINE | ID: covidwho-1004732

ABSTRACT

Biomaterials have been the subject of numerous studies to pursue potential therapeutic interventions for a wide variety of disorders and diseases. The physical and chemical properties of various materials have been explored to develop natural, synthetic, or semi-synthetic materials with distinct advantages for use as drug delivery systems for the central nervous system (CNS) and non-CNS diseases. In this review, an overview of popular biomaterials as drug delivery systems for neurogenerative diseases is provided, balancing the potential and challenges associated with the CNS drug delivery. As an effective drug delivery system, desired properties of biomaterials are discussed, addressing the persistent challenges such as targeted drug delivery, stimuli responsiveness, and controlled drug release in vivo. Finally, we discuss the prospects and limitations of incorporating extracellular vesicles (EVs) as a drug delivery system and their use for biocompatible, stable, and targeted delivery with limited immunogenicity, as well as their ability to be delivered via a non-invasive approach for the treatment of neurodegenerative diseases.


Subject(s)
Biocompatible Materials/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Animals , Clinical Studies as Topic , Drug Delivery Systems/adverse effects , Drug Delivery Systems/methods , Drug Evaluation, Preclinical , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Humans , Nanoparticles/chemistry , Neurodegenerative Diseases/drug therapy , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Polymers/chemistry
16.
Biomater Sci ; 9(4): 1217-1226, 2021 Feb 21.
Article in English | MEDLINE | ID: covidwho-997953

ABSTRACT

Over the past century, viral respiratory pandemics have been a leading cause of infectious disease worldwide. A deep understanding of the underlying mechanisms of the viral interactions with host cells at the target sites is necessary for a rapid response to such pandemics. To meet this aim, various testing platforms are required to recapitulate the pathophysiological behavior of the virus within the respiratory tract. These bioengineered platforms can effectively be used for the development of different therapeutics and vaccines. This paper briefly reviews the progress in the areas of biomaterial use for pulmonary tissue regeneration and integration with current bioengineered platforms including engineered tissues, organoids, and organs-on-a-chip platforms for viral respiratory disease studies. Finally, a brief overview of the opportunities presented by organ-on-a-chip systems for studying COVID-19 and subsequent drug development is introduced.


Subject(s)
Biocompatible Materials/chemistry , COVID-19/metabolism , Models, Biological , SARS-CoV-2/metabolism , Tissue Engineering , Animals , COVID-19/pathology , COVID-19/therapy , Humans
17.
Biotechnol J ; 15(12): e2000100, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-650634

ABSTRACT

Biotinylated peptide amphiphile (Biotin-PA) nanofibers, are designed as a noncovalent binding location for antigens, which are adjuvants to enhance, accelerate, and prolong the immune response triggered by antigens. Presenting antigens on synthetic Biotin-PA nanofibers generated a higher immune response than the free antigens delivered with a cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN) (TLR9 agonist) adjuvant. Antigen attached Biotin-PA nanofibers trigger splenocytes to produce high levels of cytokines (IFN-γ, IL-12, TNF-α, and IL-6) and to exhibit a superior cross-presentation of the antigen. Both Biotin-PA nanofibers and CpG ODN induce a Th-1-biased IgG subclass response; however, delivering the antigen with Biotin-PA nanofibers induce significantly greater production of total IgG and subclasses of IgG compared to delivering the antigen with CpG ODN. Contrary to CpG ODN, Biotin-PA nanofibers also enhance antigen-specific splenocyte proliferation and increase the proportion of the antigen-specific CD8(+) T cells. Given their biodegradability and biocompatibility, Biotin-PA nanofibers have a significant potential in immunoengineering applications as a biomaterial for the delivery of a diverse set of antigens derived from intracellular pathogens, emerging viral diseases such as COVID-19, or cancer cells to induce humoral and cellular immune responses against the antigens.


Subject(s)
Adjuvants, Immunologic/chemistry , Nanofibers/chemistry , Peptides/chemistry , Peptides/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigen Presentation , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/immunology , Antigens/administration & dosage , Antigens/chemistry , Biocompatible Materials/chemistry , Biotechnology , Biotin/analogs & derivatives , Cytokines/metabolism , Drug Design , Immunity, Cellular , Immunity, Humoral , In Vitro Techniques , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanofibers/administration & dosage , Nanofibers/ultrastructure , Ovalbumin/administration & dosage , Ovalbumin/immunology , Peptides/administration & dosage , Protein Engineering
18.
Macromol Biosci ; 21(1): e2000252, 2021 01.
Article in English | MEDLINE | ID: covidwho-740854

ABSTRACT

Bacterial infectious diseases and bacterial-infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross-linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self-healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity. In this review, the recent progress of antibacterial hydrogel including the fabrication methodologies, interior structures, performances, antibacterial mechanisms, and applications of various antibacterial hydrogels is summarized. According to the bacteria-killing modes of hydrogels, several representative hydrogels such as silver nanoparticles-based hydrogel, photoresponsive hydrogel including photothermal and photocatalytic, self-bacteria-killing hydrogel such as inherent antibacterial peptides and cationic polymers, and antibiotics-loading hydrogel are focused on. Furthermore, current challenges of antibacterial hydrogels are discussed and future perspectives in this field are also proposed.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Hydrogels/therapeutic use , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/therapeutic use , Bacterial Infections/microbiology , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Delayed-Action Preparations/therapeutic use , Humans , Hydrogels/chemistry , Silver/chemistry , Wound Healing/drug effects
19.
Carbohydr Polym ; 250: 116800, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-718667

ABSTRACT

Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.


Subject(s)
Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Betacoronavirus/isolation & purification , Biocompatible Materials/chemistry , COVID-19 , Cell Survival/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Lung Neoplasms/pathology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL